Skip to main content

Table 4 Cross-national differences in the association between spousal age difference and contraceptive use

From: Spousal age differences and women’s contraceptive use in sub-Saharan Africa

No.

Country

Odds ratio: spousal age difference (years)

T-statistic

P > t

[95% conf. interval]

1

Namibia

0.974

-3.95

0.00

0.962

0.987

2

Burkina Faso

0.979

-4.84

0.00

0.970

0.987

3

Burundi

0.980

-3.43

0.00

0.969

0.991

4

Zambia

0.980

-4.13

0.00

0.971

0.990

5

Nigeria

0.981

-6.45

0.00

0.975

0.987

6

Zimbabwe

0.981

-4.65

0.00

0.974

0.989

7

Gabon

0.982

-1.31

0.19

0.956

1.009

8

Liberia

0.983

-1.90

0.06

0.967

1.001

9

Kenya

0.984

-4.40

0.00

0.977

0.991

10

Malawi

0.984

-4.27

0.00

0.977

0.991

11

Democratic Republic of the Congo

0.984

-2.16

0.03

0.970

0.999

12

Ethiopia

0.985

-2.67

0.01

0.974

0.996

13

Senegal

0.987

-3.37

0.00

0.980

0.995

14

Sierra Leone

0.987

-3.30

0.00

0.980

0.995

15

Guinea

0.988

-2.53

0.01

0.979

0.997

16

Ghana

0.989

-1.98

0.05

0.979

1.000

17

Tanzania

0.990

-2.52

0.01

0.983

0.998

18

Madagascar

0.991

-2.26

0.02

0.983

0.999

19

Mali

0.993

-1.73

0.09

0.984

1.001

20

Mozambique

0.994

-0.87

0.39

0.980

1.008

21

Cote d’Ivoire

0.994

-0.95

0.34

0.982

1.006

22

Uganda

0.994

-1.18

0.24

0.985

1.004

23

Rwanda

0.997

-0.87

0.39

0.989

1.004

24

Benin

0.998

-0.65

0.52

0.992

1.004

25

Niger

0.999

-0.14

0.89

0.988

1.011

26

Gambia

1.001

0.23

0.82

0.989

1.013

27

Lesotho

1.002

0.40

0.69

0.991

1.013

28

Chad

1.003

0.32

0.75

0.985

1.022

29

Cameroon

1.007

1.44

0.15

0.998

1.016

  1. The models control for woman’s age, religion, husband’s education, number of children alive, gender composition of children alive, type of place of residence, polygamous union, year of survey, country, co-residence with husband, heard about family planning in the media in the last few months, heard about family planning from a health worker, fertility preferences, women’s education and decision-making about own healthcare